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The electron-spin-resonance and transmission-resonance line shapes in a metal containing
impurities with local moments are evaluated for arbitrary exchange, hyperfine interaction,
and nuclear spin using the Bloch-like equations derived by Langreth, Cowan, and Wilkins.
Classical skin-depth conditions are assumed and the drift current produced by the gradient
in the magnetic field is included in the diffusion term. Computer evaluation and a physical

interpretation of the results are given.
mission-resonance data in Cu: Mn.

The theory is compared with the experimental trans-
It is shown that the anomalies in the data are due to hy-

perfine interaction and a breakdown of strong coupling at low temperatures.

I. INTRODUCTION

When Owen, Browne, Knight, and Kittel® first
examined the electron-spin-resonance (ESR) of a
magnetic impurity in a metal (Mn in Cu) they ex-
pected to observe a large g shift and line broadening
of the impurity resonance due to exchange interac-
tion with the conduction electrons. Instead, they
found a narrow line near g = 2. Hasegawa2 explained
the data in terms of a two-part system composed of
the magnetic impurity magnetization ﬁ,, and the con-
duction-electron magnetization M, which relaxes to
the lattice with spin-lattice relaxation time 7', and
cross relaxes to ﬁ,, with a time T,,. By detailed
balance Ty, the d to s cross relaxation time is
related to T, by the relation Tys= x0T, where x2
is the ratio of the impurity susceptibility x3 to the
conduction-electron suscept1b1hty xs Hasegawa
pointed out that when M, relaxes to M the energy
does not necessarily flow to the lattice but may be
returned to M, via Ty. This double cross relaxa-
tion has the same effect as no relaxation at all.
Thus, T;.1, the effective relaxation time of I\_/i,,,
depends on the size of T, relative to 7,,. Hasegawa
showed that

Tyer1=Tes(Tsg+ Tsl)/Tsd .

When Ts; < Ty, Tyerr=Tys= Xg Ts4; but when T'i;>> Ty,
Tyers = Ts,x?_. In this latter case, where T,y is
controlled by T,, the relaxation is commonly said
to be bottlenecked.® Hasegawa also explamed the
lack of g shift by pointing out that when M and M,,
have fully cross relaxed (i.e. M,, is bottlenecked)
they will be parallel and unable to exert a torque

on each other.

Schultz and co-workers*® have used Hasegawa’s
model to explain the transmission-electron-spin-
resonance (TESR) data for various transition im-
purities in copper and silver. They assumed bottle-
neck conditions and explained that the observed
temperature-dependent g shift was due to the in-
equality of g, the conduction-electron g value,
and g,, the impurity g value. In TESR, dilute alloys
are used so that at high temperature x> yJ and
the g value is near g,. At low temperature, where
x%>>x2% the magnetic impurity dominates the reso-
nance signal and the g value moves down to g,. In
order to explain the linewidth data it was necessary
to add an impurity spin-lattice relaxation time 7T,
which was comparable in size to T';.

From the TESR viewpoint, the term bottleneck
is a rather unfortunate choice of terminology since
it is more logical to consider the conduction elec-
trons on the same basis as the magnetic irg.purities
rather than as a reservoir through which M, re-
laxes. In addition, one normally expects that when
a bottleneck is broken the relaxation will be faster,
but as the term is now used, 7. becomes much
slower (if T, is kept constant) as the bottleneck is
broken.

Hasegawa described the exchange-coupled sys-
tem with two Bloch-like equations coupled to each
other by the cross relaxation and by molecular or
exchange fields. These phenomenological equa-
tions have been put on a better footing by Langreth,
Cowan, and Wilkins® (LCW) who showed from first
principles that coupled Bloch-like equations proper-
ly describe the system in the limit v2Hy <<2T, where



3798 J.

H, is the applied magnetic field and T is the temper-
ature. They included the hyperfine interaction with
the impurity nucleus which had previously been
ignored, and showed that contrary to Hasegawa’s
assumption, the spin lattice and cross relaxation
proceed toward the instantaneous equilibrium mag-
netization. The hyperfine interaction enters into
the problem extremely simply, appearing only in
the local magnetic field that each magnetic impurity
experiences. One might expect that it should ap-
pear in the molecular field that the conduction elec-
trons experience. However, as an electron moves
through the sample it encounters many magnetic
impurities during its spin lifetime. For dilute sam-
ples no interaction occurs between impurities so

all nuclear orientations are equally probable and
the hyperfine interaction averages to zero. Like-
wise, all spatial dependence of the exchange inter-
action is averaged away and only the long-wave-
length component remains.

In order to get the ESR or TESR line shape it is
necessary to treat the diffusion of the conduction
electrons. Kaplan’ has treated diffusion in the
conduction-electron spin resonance (CESR) of pure
samples by adding a diffusion term proportional to
v2M; to the Bloch equation in a manner analogous
to Torrey’s® treatment of the resonance of diffusing
nuclei in a liquid. This method gives excellent
agreement with experiments®!® and has been shown!!
to be equivalent to Dyson’s 12 Green’s-function ap-
proach. Walker'® has pointed out that the drift cur-
rent produced by the gradient in the magnetic field
(which was included in Torrey’s treatment but not
carried by Kaplan) can be much larger than the dif-
fusion current in the skin region. This added term
cancels for CESR in a pure sample, but must be
carried for any more complicated calculation.
Kaplan’s treatment of the diffusion is valid only for
classical skin conditions. Lampe and Platzman'*
have shown that the signal can be written as the
product of resonant-spin terms times a power of
the surface impedance for spinless electrons. In
order to treat the anomalous skin conditions one
must then only evaluate the anomalous surface im-
pedance. This procedure, using Reuter and Sond-
heimer’s !® calculation of the anomalous surface im-
pedance, gives excellent agreement with experi-
ments'® in pure samples. Walker has questioned
this approach, pointing out that the assumption that
the diffusion is driven by Vﬁs limits one to classi-
cal skin conditions.

In this paper we solve the LCW equations for both
the ESR and TESR line shapes with any strength ex-
change including hyperfine interaction with arbitrary
nuclear spin. We include 7,; relaxation and the
drift current term, but we do not treat the anomalous
skin effect. Anomalous skin conditions should not
occur in very concentrated alloys due to the short
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mean free path. However, our chief reason for
not including it, apart from the question of whether
Lampe and Platzman’s approach is valid at all,

is that it adds considerable complexity and an addi-
tional parameter without adding anything that will
change the basic physical interpretation. The in-
teraction responsible for the rapid T,; relaxation
is not understood since the effect of relaxation by
the conduction electrons is treated as cross relax-
ation. However, we include the T,, term since it
appears to be physically necessary.

We will discuss our results using a combination
of analytical expansion in various limits and com-
puter evaluation in order to present a physical in-
terpretation of the manner in which the transition
is made from weak to strong coupling and of the
effects of hyperfine interaction. In our discussion
we will avoid talking in terms of the bottleneck.
We find that 7, is the natural time to use and that
the character of the resonance depends on the size
of T, relative not only to T'; but also to Ty, the
separation of the two resonances, and the hyperfine
splitting.

II. CALCULATION OF LINE SHAPE

We assume that a steady magnetic field HyZ is
applied perpendicular to the flat sample and that
the transverse components of the electric field E,
magnetic field H, and a total magnetization ﬁ, vary
as e'“"™**  The displacement current can be ne-
glected inside the metal so that Maxwell’s equations
become

~ 1(0H aﬁ)
v X E:z- g +41r—é-t— , 1)
vxH= @n0/c)E . (2)

In order to obtain the ESR and TESR line shapes,
we must solve these equations for the rf fields in-
side the sample. The calculation is complicated
because the relation between M and rf magnetic
field is nonlocal due to the cliffusion of the elec-
trons. Dyson12 solved for M in a pure sample by
expressing it as an integral of a Green’s function
over the diffusion and relaxation probabilities.
Kaplan’ pointed out that the problem could be solved
much more simply by assuming that M is described
by a Bloch equation, as modified for diffusion by
Torrey. 8 When magnetic impurities with no hyper-
fine interaction are added, two Bloch equations are
needed, one for the conduction-electron (s-spin)
magnetization M,,and one for the magnetic (d-spin)
magnetization My. However, when we consider the
nuclear hyperfine interaction, the problem is more
complicated since the torque that an electron ex-
periences depends on the effective magnetic field
that it sees. A nucleus of spin I has 27+ 1 orienta-
tions so that we need a separate equation to de-
scribe the d magnetization 1\7[,,,,, in each of the
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21+ 1 possible environments in which a d spin might
find itself. This problem has been considered the-
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oretically by LCW who derived the following ap-
propriate Bloch-like equations:

1
dM .. . 1 = - 1 - - .
M, =7sMX (H+ aMd)_ T [Ms_ Xg(H+ 'de)]_ T [Ms_ Xg(H+ aMd)]
dt T T4
+ 7 [Ma= o+ o))+ DV (M, - $(H+ oMy)], @)
My o SR ait e o (d x3**>
dt —'}/deX(H+Hm+aMs)—le (Mm—21+1(H+ aMs)
1 (=~ ¥ = = > 101 = o= =
- Tds (Mm_ 21+ 1 (H+ aMs) + 21+ 1 Tsd [Ms XS(H+ aMd)] ’ (4)
[
where m=-1,...,I-1, I. «ais the exchange field treatments is in the diffusion term, where we have

constant and to lowest order in J is equal to 2Jp,
where J is the exchange integral and p is the den-
sity of states per electron at the Fermi surface.
H, is the hyperfine field

H,= mApy2

(5)

and

I
Md: Z‘ Mdm :

ma-1

6)

We shall assume for all numerical calculations that
T4s is given by the first-order perturbation expres-
sion given by LCW:

1 _4nk o2 Xe(1)

o= iyt 1)

where x2=x2(1)/7T is assumed to have a Curie be-

havior. T, is related by Ty, by Tys=x2T, We
have slightly generalized the LCW equations by
letting v, differ from v, and by adding the 7';; term.
These equations differ somewhat from the phenom-
enological equations previously used for I=0 in that
relaxation is toward the instantaneous equilibrium
magnetization. These differences are important
since the equations now give the correct static
susceptibilities

Xs=Xs(1+ ax9)/ (1 - &%),

Q%X sXd (8)

Xa= X3+ axd)/ (1 - %) .

The difference between y, and xg is slight since
the Pauli susceptibility x? is small and tempera-
ture independent. But note that, since x‘d’ obeys a
Curie law, x, passes through zero and reverses
sign for negative exchange as the temperature is
decreased. This simply corresponds to the ex-
change field becoming stronger than the applied
field. Thus, x, can depend strongly on tempera-
ture even though yJ does not.

Another difference between Eq. (3) and previous

©)

included a drift current term. Without this drift
correction Eq. (3) does not have the proper steady-
state solution M =y3(H + aM,).

Note that although Eqs. (3) and (4) appear to be
very complicated, they are, in fact, very sim;_)_le,
stating, for example, that the time change of M,
at some point in the sample is due to the torque of
the resultant effective magnetic field plus the spin-
lattice relaxation toward the instantaneous equilib-
rium magnetization, the cross relaxation, and the
electron diffusion.

Equations (1) and (2) can be rewritten, using
complex notation and dimensionless variables, as

- 4miedM + (K2 - ie?)X=0, (10)

-ic

—ic 8¢
4ro 0z

, 11)

where

=g+, ms:Mu_iMsy ’ mdszx_iMdy’

ng"—iEY’ }(Z:Hx_iHyy Ka‘:%kaGi’

€= 66/6 ) 68 =(2D7;l)1/z, 6 = (02/2'"0(1))1/2 .

6 is the skin depth, 6, is the spin depth, i.e., the
distance a spin can diffuse before relaxing, and K
is the dimensionless propagation constant.

The 27+ 2 equations given by Egs. (3) and (4) can
be written in the form

(A =K%+ (B+ ax’K®)IM,+x%(C+K?)C=0,
(12)
EM+G My + JM,+x2F=0,

where

(13)

A=1+ (1+ axg)Tsl/Tsd+iTsl[w_ ws(1+ axd )] ’
(14)

B==Tg(1+ axIx2)/ (Teax)) - axl+iay,w, Ty,
(15)
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C==1+iw, T Xs/Xs (16)
_ s lroxs Ty
E= = 5= "7, t1Me®aprys )
G =-l—+ —l—u—+i[u)-—w,,(l+ax )—mwh,]>Ts,,
" \Tq; TsaXr ¢
(18)
J= angsl/[Tsd(21+ nj, (19)
|
A—iEz—Xz B’+ang2 B'+ang2
E G(~I)+d J
E J G(=I+1)+d ...
E J J
- 4mie? - 4mie? - 4mie?

where B'=B + ay%ie® and X?= K?-i€®. Because of
the high symmetry this is easily solved to give the
following quadratic equation in X2:

X' -C X%+ Cy=0, (22)
where
Cy=Cyp+X3Cy1, Cp=CyuX},
and
Cio=[A-ie® -B'E/(U+)]V, (23)
_ o (F(l+ N+ E _
Cyy = - 4mie€ V<—‘U_+H 1, (24)
Cy=-A4meV
- 2 0 _ —3 2
» C+i€2+FA—ze (1+ ay)F - FB-EC —i€’E )
U+d
(25)
with
1 é 1
= = 26
U m=-I Gm ( )
V={1+ax’E/ WU+ . (27)

x% is very small so that to first order in x? the
roots are

K§=K%y+X3C31/Cyp, (28)

K§= K§0+ Xg (C11—- C21/Cyy) (29)
where

K2,=i€? (30)

K3y=Cio- K3 . (31)

Ko just gives the usual propagation of the rf field
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(20)

F:<—x3, idea> Ty

Td, N xg 2I+1
with

Xr= Xd/Xs 3y Xs: Xg/)(g ’ whiz ‘ydAhf ’
I
wms=YsHo, wg=vHo, M4= L’ Mam -
me-
To have a nontrivial solution, the determinant of
the coefficients of Egs. (12), (13), and (10) must
be zero:

B+ angz Xg(C+i€2+X2)

J X°F
0
I *sF -0, @1)
G(I)+J XF
- 4mie?

|

into the skin depth. K, describes the propagation
of the spin magnetization into the sample.

In conventional ESR the experimentally measured
quantity, when magnetic field modulation is used,
is the derivative with respect to field of ® (the
power absorbed by the sample as the magnetic field
is swept through resonance). We have

®= (c/4m)3y Im(8) , 32)
where ¥, is the rf magnetic field applied to the
sample and & is evaluated at the surface. We will
evaluate @ only in the thick-sample limit. But, in

order to also get the TESR signal, we will solve
the boundary value problem for arbitrary thick-
ness. We assume

¥=30,+3, = Pcoshk z+ @sinhk, 2

+Rcoshk,z+Ssinhk,z (33)

b

where K2= 3k26% and K2= 3k26%. The constants P,
@, R, and S are determined from the boundary con-
ditions

R (- d/2)=3 , K(d/2)= - b, , (34)
afam, - x3GC+ ax39my) g/
9z=0 ’
(35)
3[9'{; - Xj(&C + axftmd)]djz
39z=0 ’

where we have taken z =0 at the center of the sam-
ple. b is still to be determined and will yield the
TESR signal. Equations (35) assume that a conduc-
tion electron striking the surface is reflected with-
out any spin relaxation. We are using Walker’s
boundary condition rather than Kaplan’s 8¢ /3z=0.
In order to relate I, and M, to 3¢ we must simul-
taneously solve Eqs. (10) and (13)—a total of 27+ 2
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equations. We find, since the equations are linear,
that

Mep=0,%,, Mgy= [U"E/(U+J)]5C,, ’ (38)

where n=1,2 and

1 (K% - K2,)+ 41  FKao /(U + )
v":47TK§0< lol“E/(U+'}¢; )’ (37)

Note that v, is of order x3. To order x3, M, makes
no contribution to the boundary condition. Then
only the ratio (v, — x2)/ ;- x2) appears in the cal-
culation. When linearized in x? this ratio becomes
X T, where we obtain

7= gty ams, VTN (38)
10 10

By applying the four boundary conditions and linear-
izing in x%, we find

Rol=b) f, o [ V3aCy Ky }}
- - T cothw
P 2 coshu 1+x, tanhu 4K10C10+K20 ‘

3 K
Toll+d) %1 +x3 cothu [— V2aCy +=2T tanhw:l} ,

=~ 2sinhu 4K15Cro Ko
(39)
R0l =b)K;o Ty tanhy
) ZKZO sinhw ’
S :Jc‘o(l +b)Kio Tfocothu
2K,y coshw ’

where u=aK,o/V 2, w=aKs/V2, and a=d/5,. In
order to evaluate §, use Eq. (33) in Eq. (11).
When b= -1, the power absorbed reduces to Dy-
son’s result. We will only consider the thick-
sample limit, where » and w are very large and
b=0. By discarding the Joule heating term we
find

_ (Kag+ 2K10)K1o g, _K1oF*
(P—nRe<Kzo(Klo+Kzo) e U+d >’ “0)
where
VIE(C+A)+(E + F)B’]
* _ _
C V(C+A) U+T
VE(E + F)B’
41
—_—,
F U I) (41)
F*=E+F, n=v2c®%%x%/8n00,. (42)

In TESR the measured quantity is the amplitude
of the transmitted magnetic field. Magnetic modu
lation is not normally used, but the phase of the
detector is adjusted to give a symmetric signal.
From Eq. (34) we see that 3¢,= - b3C. b is deter-
mined from the requirement that the transmitted
field must be a traveling wave, thatis, | E, (4/2) |
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=1 H,(d/2)| and | E,(d/2)| =1 H(4/2)!. In complex
notation this requirement becomes b3Cy= i (d/2).
We assume that « is large, that is, the sample is
many skin depths thick, and we find

4 *
K= (K% —II{(le)gz(I:{ZO sinh2w ’ 43)
where
w=dK,o/V 28,
and (44)

{ = )(23(300/\/—2-0’63 .

III. DISCUSSION AND NUMERICAL EVALUATION

The features of the line shape depend critically
upon K,,. From Egs. (24) and (31) we have

K3,=[A-BE/(U+J)|V. (45)

When there is no hyperfine interaction K%, can be
written in the form

K§0= (xs+ Xa)(Xg)'l [1 + iTeM(w - wﬂ)]Tsl/Teﬂ

—ET*/Tg [1+ T*(w—-w*)], (46)

where
w0y Xs®atXgwg (an)
Xs+ Xa
1 _ xog/T“+x°‘/T“ (48)
Tese Xst Xa
wi=wa(l+ax?), (49)
1 1 1

™ = _T—; + —T: . (50)
This expression is exact to order axg. ¢ is a com-
plicated quantity which has only a slight dependence
on 1/T,,. & is, in general, complex, but its imag-
inary part vanishes near w¥. When hyperfine in-
teraction is present, the expression for K2, is
much more complicated, but numerical calculation
shows that a separation can be made similar to
that of Eq. (46).

When only the first term in Eq. (46) is important
we have the situation that has been called the bottle-
neck, where the resonant frequency and the line-
width have the very simple temperature dependence
described by Schultz and co-workers* [Eqs. (47)
and (48)]. The first term in Eq. (46) is indepen-
dent of T,, so that the cross relaxation enters into
K,, only through the second term, where the width
of the resonance at w¥ is determined by 7,,. Thus,
the bottleneck holds when 1/y T is large enough to
wipe out the second term. But note that it is not
merely sufficient to have 1/yT,,> 1/yT;, ; it must
also dominate over 1/7T,, (wy—w,)/y, aXlw/y,
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and A,,. Since the term bottleneck is traditionally
associated with 7, we will use the term strong cou-
pling to denote the condition where the second term
in Eq. (46) is negligible. This usage emphasizes
that it is the size of the cross relaxation that de-
termines the character of the resonance.

In order to understand the physical significance
of our results we will combine computer calculation
and analytical evaluation of the line shape to discuss
various special cases without regard to whether
these cases corresnond to actual physical situations
We start with zero exchange, followed by strong
coupling. We will then consider the two cases [see
Eq. (7)] where strong coupling breaks down; (i)
weak exchange and (ii) large d susceptibility (or low
temperature). Finally, we consider several cases
which correspond to possible experimental condi-
tions.

6

A. Zero Exchange

When =0, B'=E=J=0, and V=1, Then the
ESR line shape [Eq. (40)] reduces to

Koo+ 2K,) (C+ A) (E+F)>
® = (__an__m__ =L/
nRe <Km Koo (Kyo+ Kpo)? 1o Y ’

(51)

The first term, which involves only the s-spin pa-
rameters, is the pure sample CESR line shape @,.
It may be obtained from Dyson’s results by taking
d> 06, 8, or from Kaplan’s results by linearizing
in 2. The drift current corrections to the Bloch
equation and the boundary condition, which Kaplan
and Dyson did not include, cancel each other out.
Feher and Kip® have given the results of computer
calculations of this line shape. The second term
in Eq. (51), ®,, is resonant at w,, or at the hyper-
fine frequencies, if there is a nuclear spin. This
d resonance has a Lorentzian line shape since we
have described M, by a Bloch equation. The factor
K, produces the mixture of absorption and disper-
sion signals expected from the phase change of the
rf field as it propagates into the skin region. Note
that for a given x?, when K,, becomes large, the
intensity of the s line drops relative to the d line;
®,/®=U(C+A)KZ (E+ F)] when K,,<< K,,, but

&, /®y=2U(C+A)/ Ky Ks(E+ F)] when K;y> Ky,
The reason for the drop in the CESR intensity is
that when K, < K,, or 8,< & the spins do not diffuse
across the skin depth during their lifetime and thus
remain in phase with H;,. But when §,> § the spins
can diffuse across the skin depth and get out of

i

C'=

H. PIFER AND R. T. LONGO 4

phase with the rf fields, thereby reducing the power
absorption. This effect shows that it is much more
difficult to detect the CESR in a pure sample than
the ESR of an impurity with the same susceptibility,
and explains why TESR is more sensitive than CESR.
The more pure one makes a sample, the more dif-
ficult it is to see its CESR.

The TESR line shape [Eq. (43)] reduces to

oo LCHAVKY 1

52
(K2 - KZ)?K,, sinh 2w ° (52)

which is the pure sample TESR signal. Again the
drift current corrections cancel. Dunifer!” has re-
ported extensive calculations of this line shape.

No d resonance occurs since the d spins are not
mobile.

B. Strong Coupling

By strong coupling we mean that the field 1/y T,
is much larger than the other fields involved in the
resonance—1/yT,;, 1/yTy;, (wa— wy)/y, axlw/y,
and A;,. When the coupling is strong, the resonant
term 1/(U+J) is broadened by 1/yT,,. Thus, in
the region where Kj; is resonant, C* reduces to
C'=(1+x,)[C+A+@I+1)F]/(1 —ax,), while
K ((E+F)/(U+J) is negligible. This means that
the ESR line shape is given by the first term in Eq.
(51), except that C+ A must be replaced by C’.
Likewise, the TESR line shape is obtained from
Eq. (52) by replacing C+A with C’. Thus, the
line-shape expressions with impurities are un-
changed from the pure sample line shapes as noted
by Schultz ef al. However, K,,is temperature de-
pendent, which gives the resonance a temperature-
dependent g shift and linewidth. This can easily
be seen from Eq. (46), where for strong coupling
the second term is negligible and K%, is resonant
at wy with width 1/7T,,,. Note the slightly different
dependence of w, and 1/T,,, on the susceptibilities
which implies different temperature dependences
for the g shift and linewidth. Equation (46) can be
reduced to the form of the pure sample expression
K3y=1+i(w - w,)T,, by defining an effective spin
depth 6;=[2DT gy X5/ (x5 +xa) I'/2.

In previous treatments, which neglected the drift
current and relaxation toward the instananeous local
field, C+A and C’ were both pure imaginary num-
bers so that the only way in which the magnetic im-
purities could affect the resonance was through
Ky, . But with these corrections we find C’ has a
real part;

[+ ax3)/Tey=xY/ Ty +ilw+wyxg/x%) 1Ts,(1+x,)

In order for strong coupling to hold, it is necessary
that 1/T,4>» ax$w. If in addition 1/T << w, then

1 -axix,

|
Re(C’) can be neglected and a pure sample line

shape is obtained. But if the coupling is so strong
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that 1/Ts,~ w, then C’ will mix the TESR absorp-
tion and dispersion signals. When the microwave
phase is adjusted to make the minima equal, the
over-all signal will not be symmetric and the peak
of the resonance will not fall at wy,. Thus, the
temperature dependence of the peak g value will not
be given by Eq. (47).

C. Weak Exchange

We now investigate the manner in which the tran-
sition is made from no coupling to the strong cou-
pling limit. To do this we consider weak exchange
and keep terms in the ESR line shape that are linear
in ax}, neglecting 1/T,,. This approximation is
always valid for small enough ax? since by Eq. (7),
1/T4 x (ax)?. Then B=ax3C and E= ax}F.
Equation (4) becomes approximately

O!Xg (Ps 04(2 + €z/wTsl)

(P:G’S-Q-@d— K
10

(53)

The exchange interaction admixes into each reso-
nance a small amount of the other so that they be-
come hybrid s-d lines. The degree of hybridiza-
tion depends on the amount of overlap of the lines.
Since the line shapes are basically Lorentzian,
we only have to consider the overlap of the dis-
persion tails if the lines are separated by several
linewidths. But the dispersion signal is antisym-
metric so that whether the intensity of the line is
increased or decreased by the admixture depends
upon whether the overlapping line is at higher or
lower field, as well as upon the sign of ax). We
find for negative (positive) exchange that the low -
(high-) field line is enhanced. Figure 1 gives
computer plots of the CESR line shape with weak
positive and negative exchange for ¢ «<1. The
enhancement is clearly visible. The physical rea-
son for the enhancement is that if the rf field H,
is along the x axis in a rotating frame where H,
is stationary and H, is near w,/y, for example,
then the s spins see an effective rf field H; ,,=H,
+aM,,. Since M,, yields the dispersion signal,
it changes sign at w,/y. Thus, for negative ex-
change and the s resonance at higher field than the
4 resonance, H, .,> H; and the s resonance is en-
hanced. For the s resonance at lower field,
H, ¢ <H;, and the s resonance is reduced.

Notice in Fig. 1 that there is also a g shift.
We can evaluate this shift by taking 3C=0 in Eqgs.
(12) and (13) and setting the determinant of the co-
efficients equal to zero with no hyperfine interac-
tion or diffusion. w, then, is a complex number
whose real part is the resonant frequency and
whose imaginary part is the linewidth. We find

w,=wg(l+axy)+i(1/Tg+1/T,y) ,

(54)
w.=wa(l+ax) +i(1/Ty+1/Ty) .
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The shift is toward higher field (lower g) for neg-
ative exchange and lower field for positive ex-
change. It is clearly due to the exchange field
adding to the external field. This is the shift that
Owen, Brown, Knight, and Kittel' looked for when
they studied Cu:Mn alloys. Note that exchange
broadening is also predicted. However, our cal-
culations show that as ax? is increased, the en-
hancement effect becomes important long before
exchange broadening enters.

From the foregoing we have this picture of the
effect of adding increasing negative exchange:

The low-field line, whether s or 4, is enhanced
and moves up in field, becoming the single strong
coupling line with frequency wy. The high-field
line loses intensity to the enhanced line, moves
away from w,, and finally is totally obliterated by
exchange broadening. For positive exchange the
converse is true, with the high-field line being
enhanced and moving down to wq.

When hyperfine interaction is present we can see
from Eq. (53) that hybridization occurs separately
with each hyperfine line. The effect is largest
for the hyperfine lines nearest the s line. This is
illustrated in Fig. 2, which shows the transition
to strong coupling when /=1,

The exchange terms appear in the TESR signal
identically as in the ESR signal. Thus, s-d hy-
bridization must occur even though the 4 reso-
nance itself does not appear in the TESR. We can
explain this by noting that, crudely speaking, the
term 1/K,,sinh2w in Eq. (43) accounts for the
propagation of the spin currents through the sam-
ple, while C* satisfies the boundary conditions.
When the d resonance occurs, the rf currents in
the skin region are modified. The change in the
spin currents required to continue satisfying the
boundary conditions is then propagated through the
sample. In Fig. 3, computer calculations of the

FIG. 1. Hybridization of
ESR lines produced by weak
exchange. g,=2.033, g,
=2.013, 1/vTg4=1/vTy
=5G, 6,/6=0.01, x2=1,
x2(1) =1, and A: ax%=-0.002;
B: axl=0; C: ax%=+0.002.
The horizontal sweep range
is 100 G. The signals are
normalized to the same peak-
to-peak height.
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FIG. 2. ESR spectrum with hyperfine interaction as
the exchange increases from weak to strong. g =2.033,
g4=2.013, 1/¥T4=1/¥Ty=10G, 5,/6=0.01, x0=1,
x2(1) =1, Ap =60 G, I=1, and A: ax3==0.0002; B: ax}
==0.005; C: ax)==0.01; D: ax} ==0.02. The hori-
zontal sweep range is 400 G. The signals are normalized
the same peak-to-peak height.

TESR signal as the exchange is varied, showing
that effects of the d resonance and even hyperfine
splitting can be observed for intermediate strength
exchange. Note that it is necessary to go to ex-

N W Y

FIG. 3. TESR spectrum with and without hyperfine
interaction as the exchange increases from weak to
strong. g,=2.033, g,=2.013, 1/vYT4=1/YT4; =10 G,
8,/6=100, d/6,=0.7, X2=0.4, x2(1)=1, and A: ax}
==0.00001, Ay =0; B: axl=—0.00007, Ay,=0; C: ax’
==0.0003, Ap,=0; D: ax’=-0.001, Ay, =0; E: ax’
==10.01, Ap=0; F: ax)=-0.00007, Ay =60G, I=1; G:
axl=~0.0003, A, =60 G, I=1; H: axl=-0,001, Ay,
=60 G, I=1; I: axl==0.01, A,=60 G, I=1. The hori-
zontal sweep range is 600 G. The signals are normal-~
ized to the same peak-to-peak height.
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FIG. 4. Real and imagi-
nary parts of K3, vs mag-
N netic field with g4=2. 033,

AN g4=2.013, 1/YT4=1/vTy

=10 G, x0=4, x2(1) =1, Ay
=0, and @x}=-0.02. The
horizontal sweep range is
1000 G. The vertical scale
\ is arbitrary and not the
“\R3 same for both parts.

tremely small exchange to obtain the symmetric
pure sample line shape.

D. Large Exchange, Large x?

Equation (7) shows that strong coupling will break
down even if ay?is large, provided x? becomes
large enough, i.e., provided the temperature is
low enough. The reason for this is simply that
the s-spin system becomes too small to affect the
d system; the d spin relaxation is dominated by
direct (T,,) relaxation to the lattice. Note, how-
ever, that even though 1/yT,, becomes very small
when x? is large, 1/yT,, can be large and the s sys-
tem can be strongly affected by the d spins. As
strong coupling breaks down, 1/T* becomes small
and the second term in Eq. (46) makes a contribu-
tion to K2,. Since £ becomes real near w,, the
effect of this term is to add a Lorentzian absorp-
tion component to Re(K 20) and a dispersion com-
ponent to the imaginary part. These parts are
plotted vs H in Fig. 4. We see that the imaginary
part crosses zero three times, so that the reso-
nance frequency is multivalued. These roots are
not of equal importance in determining the nature
of the TESR signal. Notice that the resonant char-
acter of R, is nullified by the resonant decrease in
transmission produced by the peak in Re(KZ,). As
X increases, R; rapidly moves out to very high
field. R, and R,, on the other hand, move only
slightly. Thus, the TESR signal is determined
chiefly by R, with a high-field cutoff appearing be-
cause of the peak in Re(KZ,), which damps out R,.
Note, however, that C*, which is resonant at
wq4(1+ ay,), also affects the TESR line. Figure 5
shows the variation of the TESR line shape as x°
is increased and strong coupling breaks down. Rj
is barely visible in Fig. 5(c). The narrowing of
the line as x{ increases is due to the term
1/sinh2w, which rapidly attenuates the signal when
Re(K %) becomes large. In Fig. 6 we compare the
roots of Im(K %;) with the peak of the TESR signal
and the strong coupling resonant frequency [Eq.
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FIG. 5. Effect of the breakdown of strong coupling on
the TESR spectrum without hyperfine interaction. g
=2.033, g4=2.013, 1/¥Ty4=1/YT4 =10 G, 8,/6 =100,
d/6,=0.7, X2(1) =1, ax’==0.02, Ay =0, and A: x1=0.1;
B: x!=1; C: x¥=4; D: X,=10. The horizontal sweep
range is 600 G. The signals are normalized to the same
peak-to-peak height.

(47)]. Notice that the strong coupling expression
gives a reasonably good fit with the peak of the
resonance throughout the region where the multiple
roots of K%, appear. A/B, the ratio of the low-
field peak to the high-field peak decreases mono-
tonically as x{ increases, although it does flatten
in the region around x%= 2 where R, first appears.
The linewidth decreases without flattening through
this region. Figures 5 and 6 clearly show the
inadequacy of the bottleneck concept. For the ex-
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FIG. 7. TESR spectrum for the same parameters that
are in Fig. 5 except Ay;=60 G, I=1,

change used in these figures, 1/yT,,=37.6 and
T,/ Ty4=3.76, so that the relaxation is moderately
bottlenecked, yet the strong coupling line shape
is not obtained except for very small x?.

When hyperfine interaction is added (Fig. 7),
the TESR line shape is more complicated, but the
same considerations apply as for I=0. Im(K2))
has many roots arising from the hyperfine split-
ting (Fig. 8), but all except the lowest-field root
are damped by resonant peaks in Re(KZ,). Notice
in Fig. 8 that the strong coupling formula breaks
down for x? an order of magnitude smaller than
where K2, first becomes multivalued. As in Figs.
5and 6, T,,/T,=3.76 and the system is moderate-

2.04+—

T T T T TTTTT T T T T TTTTT

2.05

2.03

g—-—

—12.00

FIG. 6. g value of the peak
1.95 of the TESR signal, the g value
at which Im(K3,) vanishes, and
the g value derived from the
strong coupling expression [Eq.
1.90 (47)] vs X0 for the parameters

g——b

2
soal 9(Kyo) used in Fig. 5. Ry, Ry, and Ry,
. —-—g(STRONG) are the roots indicated in Fig. 4.
-~ ——g(PEAK)
1.85
2.01 Lol N N
A 2 4 7 1. 2. 4. 7. 20.
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FIG. 8. Effect of hyperfine in-
teraction on the g values in Fig. 6,

190 Ap=60G, I=1.

ly bottlenecked. Figures 5-8 clearly show that
when strong coupling does not hold it is totally
inadequate to describe the line shape by evaluat-
ing the roots of K%;. Chui, Orbach, and Gehman'®
have reported 2I+1 roots of Im(K %) that appear

@ o >
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FIG. 9. Effect of the breakdown of strong coupling on
the ESR spectrum. g, =2.033, g,=2.013, 1/YT,;=1/vTy,
=10 G, 6,/6=20, xX(1) =1, Ap=0, and A: axi=-0.02,
x!=0.1; B: axl=-0.02, x2=0.4; C: ax=-0.005, X
=0.4; D: ax3==0.0005, x2=0.4; E: ax)=-0.02, x{=1;
F: ax}=-0.02, x2=2; G: axl=-0.02, x0=10; H: ax}
==-0.02, x%=20; I: @x}==-0.02, x2=40. The horizontal
sweep range is 600 G, The signals are normalized to the
same peak-to-peak height.

when wy Ty>1 are split by the hyperfine field
and are spurious for zero hyperfine field. These
reported roots correspond to the roots shown in
Fig. 8. Note that although they are greatly modi-
fied when A,, =0, they are not spurious.

The breakdown of strong coupling has a some-
what different effect on the ESR line shape since
large x? makes the 4 resonance dominant. In
Fig. 9 we show the line shape for several different
values of x?. Figure 9(a) is the strong coupling
line. As X?is increased and strong coupling
breaks down [Fig. 9(b)] a second hybrid reso-
nance, broadened by cross relaxation, appears on
the high-field side. If, at this point, the exchange
is decreased [Figs. 9(c) and 9(d)], the second line
grows in intensity and, in the limit of small ex-
change, can be identified as the d resonance. [Note
in Fig. 9(d) that the s resonance is much smaller
than the d resonance even though x?=4. This is
the attenuation effect for 6,> & that we have dis-
cussed in the zero exchange section.| On the other
hand, if ay!is kept fixed at — 0. 02 and x? is in-
creased [Figs. 9(e)-9(g)], the second line grows
in intensity but now cannot be identified as s- or
d-like because, although strong coupling fails, the
exchange is not weak. As x? further increases
[Figs. 9(h) and 9(i)], the two hybrid lines lose
their s character and merge to form a single d
line. This line is not simply due to the 4 term
K oF*/(U+J) in Eq. (40). The small A/B ratio
and the peculiar line shapes in Figs. 9(g) and 9(h)
are due to a drift current contribution in C* which
is not negligible even for large x2. This contribu-
tion rapidly disappears when € is decreased. When
hyperfine interaction is added (Fig. 10) the behavior
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FIG. 10. ESR line shapes with the same parameters
as in Fig. 8 except Apg=60 G, I=1, and A: ax)=-0.02,
x=0.1; B: axl=-0.02, x2=0.4; C: axl==-0.02, X
=1; D: axl==0.02, x{=4; E: axl=-0.02, x{=40;
F: axl==0.01, x%=0.4; G: axl==-0.0075, x2=0.4;
H: axl=-0.005, x0=0.45 I. ax}=—=0.001, x2=0.4.
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of the line shape is similar, although complicated
by the extra hyperfine lines.

E. Cu:Mn

The experimental TESR data® on Cr in Cu
seems to be very well explained by the strong cou-
pling limit without hyperfine interaction. However,
Mn in Cu (and Ag) has been reported to be quite
anomalous by Schultz, Shanabarger, and Platzman*
(SSP): (i) The peak g value does not approach g,
as rapidly as the theory predicts at high T, (ii)
the line shape is asymmetric with a long tail on
the low-field side, (iii) in the most heavily doped
samples [x%(1)~ 65] the peak g value initially ap-
proaches g, as T is lowered but then reverses and
moves toward &, and (iv) samples with x%(1)= 37
have a resonantlike peak :n A/B near 7 °K which
does not appear in samples whose impurity con-
centration differs by only a factor of 2. This A/B
anomaly is not believed to be an intrinsic effect
since it is not present in recent data.!® In the fol-
lowing sections we discuss the application of our
results to the Cu: Mn data.

1. High-Tempevature Plateau

More accurate high-temperature measurements'®
than originally reported* make it possible to fit
the high-temperature data to Hasegawa’s theory
without any plateau but at the expense of producing
low -temperature deviations. However, our cal-

culations show that the peak g value does not fol-
low the temperature dependence of the true reso-
nant g value [Eq. (47)] even at high temperature

(=~ 20°K), where strong coupling surely applies.?®
The reason is that C* is a complex quantity depen-
dent upon the magnetic field. The TESR signal

is the component of H, that is in phase with a refer-
ence rf field H,. The phase of H, differs from the
phase of the field that excites the transmission by
an angle 6, which can be arbitrarily varied. As

6 is varied, the TESR signal changes from anti-
symmetric about the resonant field at 6 =0 to sym-
metric 6= 37. When the data are taken, 6 is varied
to give a signal whose minima are equal. If C*is
imaginary, this setting corresponds to 6= 17 and
the signal is also symmetric. If C*is a complex
constant, a symmetric signal and equal minima

are obtained for 6=7/2+ 7, where tann=C}/C}

and C*=C%+iC}. However, if C* depends on H,
and 6 is adjusted to give equal minima, then near
the resonant field there will be a mixture of the
symmetric and antisymmetric signals which will
shift the peak away from resonance. A very small
amount of antisymmetric signal will produce a
rather large g shift. In Fig. 11 we plot 6H/AH,

the shift of the peak from the resonant field relative
to the linewidth, vs ax? for several impurity con-
centrations at 20 °K. For a linewidth of 100 Oe,
8H/AH =0.015 corresponds to 8g=~0.001. At 20°K,
1/T,, is large so that strong coupling holds except
for small ax? and large X (1), where we find a
small effect due to hyperfine interaction. Note in
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FIG. 11. Dependence of the shift of the peak of the
TESR line from true resonance upon the exchange field
and the impurity content. T =20°K, g,=2.033, g;=2.013,
1/¥T4 =15 Oe, 6,/6=50, d/6,=0.7. The dotted line
shows that the hyperfine interaction has only a small ef-
fect at 20°K. The dashed line is the apparent shift using
Eq. (55) rather than Eq. (46) to determine the resonance
field.



3808 J.

FIG. 12. Asymmetry
in the TESR line shape at
20°K for the same pa-
rameters as in Fig. 11
and with ax}=-0.02,
x2(1)=70. The dotted line
is the reflection about the
peak of the high-field

H— side.

Fig. 11 that if we had used SSP’s equation for the
resonant field,

wsee = (X we+ X5 W)/ (x3+ xD), (55)

rather than Eq. (47), the apparent plateau would
have been somewhat larger. For a given ax?, the
size of the plateau increases with x2 (1) as reported
by SSP. But for large x% (1) this is not true, with
the shift for x? (1) =40 (not shown) almost over-
lapping the shift for x2 (1)=70. It is apparent that
a large plateau in the g shift is indicative of weak
exchange. However, we cannot use the size of the
plateau to accurately evaluate ax? since in addition
to the strong dependence on ax? and x? (1) the shift

(b)

B —— Apg= 20.
—== Aps= O

-10.

FIG. 13. (a) Real and imaginary parts of K3, vs H at
10°K. g,=2.033, g,=2.013, 1/9T 4 =220 Oe, 1/¥Ty =15
Oe, ax)==0.02, 6,/6=50, d/6,=1.45, x%(1) =65, Ap,
=20 Oe, I=5. H is varied over 800 Oe. (b) The line shape
at 10°K. (c) Real and imaginary parts of K3, at 2°K with
A =0 and 20 Oe. (d) The line shape at 2°K with Ay,
=20 Oe.
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FIG. 14. Temperature dependence of the calculated
peak g value for three different impurity concentrations.
The dotted lines are derived from Eq. (55): g¢=2.033,
g4=2.013, 1/YT4; =15 Oe, @x3=—10.02, 8,/6=50, Ay
=20 Oe, I=3. For x0(1)=3, d/6,=0.7 and 1/YT =20
Oe. For x%(1)=16.5, d/6,=0.7 and 1/YT4=65 Oe. For
x%(1) =65, d/6,=1.45 and 1/¥T4 =220 Oe.

also depends more weakly on T; and 6,/6. To ob-
tain accurate values one must carefully fit all the
data. Likewise, without careful fitting it is not
possible to derive the true g value from the peak
g value.

2. Asymmetry

We saw in Sec. IIIE 1 that the field dependence
of C* causes a mixture of the symmetric and anti-
symmetric TESR signals to produce a g shift. This
mixture also produces an asymmetry in the line
shape (Fig. 12). However, even with a large g
shift, the asymmetry is rather modest. Note that
the resonance has the longer tail on the high-field
side.

There is another mechanism for producing asym-
metry of a more drastic nature —the break-
down of strong coupling. This asymmetry is pro-
duced by a modification of K,; by the s-d interac-
tion. We see from Eq. (46) that when the coupling
is strong (1/7T,, large), Re(K%) is independent of
H, while Im(K%) varies linearly with H and vanishes
at resonance. When 1/7, is smaller, the second
term in Eq. (46) contributes a resonant character
to both parts of K%,. In Fig. 13(a) we plot Re(K%)
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FIG. 15. Temperature dependence of the calculated

linewidth (solid), 1/YTe (dashed) given by Eq. (48) and
the apparent 1/YTq (dotted) that would be derived by
correcting the linewidth by an amount determined from
A/B using Schultz, Shanabarger, and Platzman’s tech-
nique (Ref. 4). g4=2.033, g;=2.013, 1/YT =65 Oe,
1/T4;=15 Oe, axi==0.02, x2(1)=16.5, 6,/6=50, d/4,
=0.7, and I=%.

and Im(K2,) vs H at 10 °K for moderately strong ex-
change. We see that Re(KZ)) is symmetric about
resonance and the TESR line [Fig. 13(b)] is sym-
metric. Figures 13(a) and 13(b) are unchanged if
hyperfine interaction is added. At 2°K, 1/T, is
reduced and strong coupling breaks down. Im(K go)
now has two resonant fields [Fig. 13(c)]. However,
the sharp rise in Re(K%;), which corresponds to a
sharp decrease in transmission, eliminates the
high-field resonance. This decrease in transmis-
sion narrows the high-field side of the resonance

and produces an asymmetric line with a long low-
field tail [Fig. 13(d)]. Note that the exchange cou-
pling is strong enough so that the hyperfine inter-
action has a relatively minor effect on K%,. For
the parameters used in Fig. 13, one would not ex-
pect resolved hyperfine structure on K, even with
weaker coupling since A,, is comparable to 1/yTy;.

3. Peak g Value

The observed asymmetry and plateau in the peak
g value both suggest that the exchange in Cu:Mn is
not extremely large and strong coupling breaks
down at low temperature. In Fig. 14 we plot the
calculated peak g vs temperature for the three
values of xX(1), for which SSP give data in Fig. 3
of their paper. The parameters chosen are roughly
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FIG. 16. Temperature dependence of the calculated

asymmetry ratio for the same parameters as in Fig. 14.
No anomaly is predicted at 7°K for x2(1) =37. For x2(1)
=37, d/6,=0.9 and 1/yTy =125 Oe.

characteristic of Cu:Mn, with T determined by
the equation 1/yT, =10+3.3x2(1) Oe and ay®
=-0.02 (-J=0.3 eV). The hyperfine constant
Ape= 20 Oe was determined from a very low-tem-
perature measurement of the nuclear hyperfine
field by Cameron et al.® Points above 20 °K are
not included since phonon effects enter. The dotted
lines in Fig. 14 give the temperature dependence

2.015

2.014

A/B—>

2.013

PEAK g VALUE

2.012

TCK—

FIG. 17. A/B anomaly and peak g value for x2(1) =37.
The anomalies appear when x{=—1/@X}, The same pa-
rameters are used as in Figs. 14 and 16 except ax)
=—-0,08.
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of SSP’s strong coupling resonant frequency [Eq.
(55)]. Comparison of the calculated peak g value
with the experimental data shows qualitative agree-
ment. The plateau for x(1) =3 is not correct.
However, we have chosen 8, /6 =50 for all three
samples when, in fact, it should increase for pure
samples. We also arbitrarily set d/6,=0.7. Fi-
nally, at low-doping levels the anomalous skin ef-
fect, which we have neglected, may be important.
Notice that at low temperature the g value turns

up toward g,. This was observed by SSP in con-
centrated samples and attributed to interactions
between impurities. Interactions may be involved
to some extent, but the up turn is also predicted

by the LCW equations without impurity interactions.
We see in Fig. 14 that, although the up turn is con-
trolled by the hyperfine interaction, it occurs at
muchlower temperature evenwith A,,=0. The origin
of this effect is not due to any change in K3, since
we see in Fig. 13(c) that the positions of the roots
of Im(K2,) change very little with A,,. Rather, it
is due to the emergence of the resonant part of C*.
When A, =0, C* is resonant at wg=w,(1 + ax,),
while K ,, is resonant at w¥ = wy(1+ ax?). For small
x{ the difference between x, and x{ is negligible,

but at low temperature with negative exchange, x,
becomes considerably smaller than xg. This moves
the C* resonance to larger g, producing the shift
in the peak. This shift cannot continue indefinitely
since transmission occurs only in the vicinity of
w%. When A,, is nonzero the hyperfine splitting of
C* makes the up turn appear at higher temperature
even though the splitting is symmetric about w; be-
cause the asymmetry in Re(K2,) attenuates the high-
field hyperfine contributions to C*.

4. Linewidth

As predicted by LCW® the line is broadened by
the hyperfine interactions. In Fig. 15 we compare
the calculated linewidth vs temperature for A,,=0
and 200e. In order to obtain values for x%(1) and
T4, SSP fit the linewidth to the theoretical width
1/Ty. To do this one must know AHyT . SSP’s
theory asserts that this quantity is uniquely related
to A/B. This is not the case for our solution. Ap-
plying SSP’s technique to the widths in Fig. 15
makes 1/yT,, (the T =0 intercept) too large and
xJ(1) too small. Note that this technique will not
give correct values even if Ay, =0. One is forced
to fit all the data at once.

5. A/B

Our calculations (Fig. 16) show a monotonic in-
crease in A/B with temperature and only a weak
dependence on A,,. Although the A/B anomaly ap-
pears to be an experimental artifact, we have found
two mechanisms which can theoretically produce
peaks in A/B at low temperature. The first mech-
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anism is simply the breakdown in strong coupling
due to large large x‘,’. For slightly smaller ex-
change (ax’~ -0.015) breakdown produces an A/B
anomaly in the temperature range 1-2 °K that has
the character of a shoulder or small bump rather
than a resonant peak of the type observed by SSP.
The second mechanism is the vanishing of x, [Eq.
(8)] when x2= -1/ax?. This is the condition where,
for negative exchange, the exchange field exactly
cancels the static magnetic field. In the tempera-
ture region where xf is near this critical value,
A/B has a sharp peak going to infinity. For axg

= -0.02 and xX(1)=37, the anomaly appears below
1°K. Figure 17 shows that even for ax®=-0.08
the peak occurs below 3 K. There is very little
dependence on Ap,. Note that the width of the peak
is only ~0.5 °K and an anomaly appears in the peak
g value as well as in the linewidth. Caution must
be used with these very low-temperature predic-
tions since the LCW equations assume yhH/kT <1.

F. 6./6<1

This limit applies to degenerate semiconductors
where the skin depth is large due to the small car-
rier concentration but the spin depth is small due
to the rapid spin-flip scattering by the donors.
There can be no TESR signal for this case. The
ESR signal becomes very simple; we obtain

®=nRe Ky [C*/Ki+F/(U+J] . (56)

When the coupling is large, the second term is ex-
change broadened and C* is imaginary, provided
the exchange is not too large as discussed in Sec.

A/B—

FIG. 18. A/B vs X! for the ESR line shape with g
=1.999, g,=2.000, 1/YT=3 G, 1/¥T5=6 G, 6,/6=0.01,
and x?(1)=0.5.
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FIG. 19. The effect of the sign of the exchange on the
ESR line shape for the same parameters as in Fig. 18
and x?=0.4. For ax’=-0.001, A/B=2.10, while for
axl=+0.001, A/B=2.72.

IIIB. We then have a single Lorentzian line. This
line is an admixture of equal parts of the real and
imaginary components since K;o= €(1 +i)"/2. Nu-
merical evaluation shows that this admixture pro-
duces an A/B ratio of 2.55. At the other extreme,
when the coupling is small, both terms contribute
Lorentzian lines. Since C* and F are imaginary,
A/B is again 2.55.

This line-shape study was originally motivated

by our observation®” ® that in degenerate Si : P doped

with Fe, a single resonance occurs with a tempera-
ture-dependent g shift, linewidth, and A/B ratio.
A/B becomes as small as 2.0 at low temperature.
We can see that this decrease in A/B can occur if
C* has a nonzero real part, which will occur with
intermediate strength exchange. However, when
we impose the requirement that only a single line
should appear with no resolved structure, we find
that A/B can deviate from 2.55 for only a very
small range of parameters. Figure 18 shows A/B
vs x for parameters typical for (Si:P): Fe. Since
g, and g, are so close and ax’is so weak, one might
suspect that this deviation of A/B from 2.55 is
merely due to the addition of two independent lines.
However, in Fig. 19 we can see that the sign of the
exchange is critical. When ax?=0 for the same
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parameters, A/B=2.47. The results of attempts
to fit this theory to the data are reported separate-
ly. z

IV. CONCLUSION

We have evaluated the ESR and TESR line shapes
in a metal containing magnetic impurities for the
general case of arbitrary exchange, hyperfine in-
teraction, and nuclear spin, but we have neglected
the possibility of anomalous skin effect. We have
shown that the size of T relative to Ty is not an
adequate test to determine the nature of the reso-
nance signal. In our discussion we have discarded
this concept of the bottleneck and have emphasized
that the character of the line shape is determined
by the strength of the T, coupling relative to the
spin-lattice relaxation times, the line separation,
the exchange fields, and the hyperfine splitting.

We find that apart from the limiting cases of strong
or weak coupling, the spectra may be complex with
the number of lines, g shift, width, and asymmetry
depending upon the exact values of the parameters.
Despite this complexity, we have been able to de-
velop a physical picture of the factors determining
these spectra. We have found that there are many
cases where the coupling is not strong, yet a single
line is observed which is hard to distinguish from
the strong coupling line and that is is not sufficient
to describe the resonance in terms of the roots of
K%,

We have compared the theory with the published
Cu: Mn transmission-resonance data and have
shown that the anomalies can be explained as a
combination of effects due to hyperfine interaction
and a breakdown of strong coupling at low tempera-
ture. A careful fitting of a wide range of experi-
mental data should provide accurate values for the
exchange and the hyperfine constant.
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Transmission measurements of the fission fragments arising in u*® thermal-neutron-
induced fission were performed in Mg, Al, Fe, and Ag by using a back-to-back fission cham-
ber. From the transmission curves, it is possible to derive the relative atomic stopping
powers of the different targets and the ranges of the fission fragments in the elements investi-
gated. The experimental results are compared with the theoretical calculations of Lindhard,
Scharff, and Schigtt concerning the loss of energy of heavy ions in matter.

INTRODUCTION

Much experimental information is available con-
cerning the energy loss of charged particles in
matter. The parameters which are varied from
experiment to experiment are the mass numbers,
the atomic numbers, the electrical charges and
the energies of the incident particles, and the
mass numbers and the atomic numbers of the stop-
ping materials.

Lindhard, Scharff, and Schigtt (LSS)! have de-
veloped a general theory for the energy loss of
heavy ions in matter, using a Thomas-Fermi sta-
tistical model for interacting atoms to predict both
electronic and nuclear stopping powers. Their
theory, which does not contain adjustable param-
eters, resulted in agreement with a wide class of
different experiments! previously performed.
Most of the subsequent experimental results?~3!
were compared with the LSS theory, which gener-
ally appears to be able to explain the fundamental
mechanism of the loss of energy of charged parti-
cles.

However, there are several cases in which the
theory shows some discrepancies from the experi-
mental values. For instance, an oscillatory de-
pendence of the electronic stopping cross section
on the atomic number Z, of the projectile was ob-
served® for Al and C. Also, an oscillatory de-
pendence on the atomic number Z, of the stopping
element was observed? by using «@ particles as
projectiles. This behavior is not foreseen by the
unmodified LSS theory, which gives a monotonic

dependence of the stopping cross section on both
Z, and Z,.

The present experiment consists of transmission
measurements on the fission fragments arising in
U®® thermal-neutron-induced fission. The stop-
ping elements Mg, Al, Fe, and Ag were used.
From the transmission curves it is possible to
derive the relative atomic stopping powers of the
different target elements and the corresponding
ranges. The aim of the experiment was to add
new data to those existing in the field of energy
loss of U%* fission fragments and to test the LSS
theory for the dependence of the stopping power
for fission fragments on the atomic number Z, of
the stopping element.

EXPERIMENTAL METHOD

The method utilized is practically the same as
that of Segré and Wiegand. 3* The measurements
were carried out by irradiating a back-to-back
fission chamber (Fig. 1) in the thermal column of
the RB-2 reactor of Montecuccolino (Bologna).
The double fission chamber® is a gas flow counter
utilizing argon containing 2% nitrogen. The elec-
trode spacing was 10 mm and the gas pressure
was adjusted slightly above ambient pressure.
The operating voltage was 500 V positive applied
to each anode. The fission-fragment source was
a thin deposit of natural uranium, with a thickness
of 0.2 mg/cm? and a diameter of 12 mm, obtained
by vacuum evaporation on a Pt disc of 0.1-mm
thickness and 20-mm diameter. The amount of
fissionable material was determined with an ac-



